Orthogonal Ramanujan Sums, its properties and Applications in Multiresolution Analysis
نویسندگان
چکیده
Signal processing community has recently shown interest in Ramanujan sums which was defined by S.Ramanujan in 1918. In this paper we have proposed Orthogonal Ramanujan Sums (ORS) based on Ramanujan sums. In this paper we present two novel application of ORS. Firstly a new representation of a finite length signal is given using ORS which is defined as Orthogonal Ramanujan Periodic Transform.Secondly ORS has been applied to multiresolution analysis and it is shown that Haar transform is a special case.
منابع مشابه
OFFPRINT Ramanujan sums analysis of long-period sequences and 1/f noise
Europhysics Letters (EPL) has a new online home at www.epljournal.org Take a look for the latest journal news and information on: • reading the latest articles, free! • receiving free e-mail alerts • submitting your work to EPL Abstract – Ramanujan sums are exponential sums with exponent defined over the irreducible fractions. Until now, they have been used to provide converging expansions to s...
متن کاملLegendre Ramanujan Sums transform
In this paper, Legendre Ramanujan Sums transform(LRST) is proposed and derived by applying DFT to the complete generalized Legendre sequence (CGLS) matrices. The original matrix based Ramanujan Sums transform (RST) by truncating the Ramanujan Sums series is nonorthogonal and lack of fast algorithm, the proposed LRST has orthogonal property and O(Nlog2N) complexity fast algorithm. The LRST trans...
متن کاملProperties of Orthogonal Gaussian-Hermite Moments and Their Applications
Moments are widely used in pattern recognition, image processing, and computer vision and multiresolution analysis. In this paper, we first point out some properties of the orthogonal Gaussian-Hermite moments, and propose a new method to detect the moving objects by using the orthogonal Gaussian-Hermite moments. The experiment results are reported, which show the good performance of our method.
متن کاملRemarks on Generalized Ramanujan Sums and Even Functions
We prove a simple formula for the main value of r-even functions and give applications of it. Considering the generalized Ramanujan sums cA(n, r) involving regular systems A of divisors we show that it is not possible to develop a Fourier theory with respect to cA(n, r), like in the the usual case of classical Ramanujan sums c(n, r).
متن کاملRamanujan sums via generalized Möbius functions and applications
A generalized Ramanujan sum (GRS) is defined by replacing the usual Möbius function in the classical Ramanujan sum with the Souriau-Hsu-Möbius function. After collecting basic properties of a GRS, mostly containing existing ones, seven aspects of a GRS are studied. The first shows that the unique representation of even functions with respect to GRSs is possible. The second is a derivation of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.06283 شماره
صفحات -
تاریخ انتشار 2017